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Abstract dimensional magnetic field.

. . . . . With their i i ligh i
A variety of insertion devices (IDs), wigglers and undu- ith their increased use in modern light source rings and

lators, linearly or elliptically polarized, are widely used asnext generation damping rings, insertion devices (IDs) with
T y iptcally p ' y arbitrary polarizations and rich harmonic contents become
high brightness radiation sources at the modern light sour

rings. Long and high-field wigglers have also been pro%__%tical components of th.e_f,e.rings. !t has become essen-
posed as the main saurce of radiation damping at next getla_tl to understand and minimize the impact of IDs on the

. L . 4 . rharged particle beam dynamics. This is particularly true
eration damping rings. As a result, it becomes increasing r rings in which the nonlinear dynamics are dominated
important to understand the impact of IDs on the chargeb

article dvnamics in the storage rind. In this baper. w y wigglers. Until recently, the most comprehensive wig-
P y 9 9. Paper, ler modeling was performed by the BESSY group using
report our recent development of a general explicit sy

. . : -~ >Y""the generating function based implicit method [4], [5]. In
plectic model for IDs with the paraxial ray apprOX|mat|on.thiS method, a symplectic higher order map was produced
High-order explic_it sym_plectic i_ntegra_tors are developeq t(r)1umerically ,for the insertion device. However, besides the
study real-vvprld msertlpn deV|ces_ W't.h a number of ng'convergence issues and limited order of the map which can

gler harmonics and arbitrary polarizations. be produced, the implicit method has difficulties in dealing
with parameter-dependency of the field, and is limited to

1 INTRODUCTION producing maps for a given design orbit.

, . i i In this paper, we report the development of a general ex-

In the storage ring, symplectic integration provides anit symplectic model for insertion devices such as wig-
essential tool to study the long-term behavior of the singlgye s and undulators. This model applies a recently devel-
particle dynamics. Magnetic multipole elements, such g3,0q symplectic integration method for a 3D magnetic field

_quad|r upoles and sextupolgs, are modelr]gdhusri]ng a SO'Ca_IIQQmiItonian with the paraxial-ray approximation [6]. The
Impu’se boundary approxmaﬂqn, In which t e magne“?mportance of this method is that it allows the generation
field is assumed to be constantifidependent) within the

of canonical maps for an ID with any parameter depen-

effective t_)ou_ndary of the magnet and zero °“ts"?'e- Suqéncy by tracking through the ID once with a differential
a magnetic field model allows one to use a special vectgfs o a hackage. More importantly, since the method is
potential, A = A.(x,y)Z for each magnet. As a result, o, jicit in nature, direct trajectory tracking in the real mag-
th? charged pgrtlclg Hamiltonian can be separated into &y field can be performed for dynamic aperture studies.
drift-kick combination of Ruth [11-H = T(p) + V(4), Consequently, this provides a benchmark for the dynamics
where T'(p) is a drift, V() is a kick. A second order o e in which the large amplitude motion may or may

Lie map approximation can be constructed for this YPRot be properly described by the on-axis map of a given
of Hamiltonians [2], resulting in an explicit symplectic in- order

tegrator for magnetic multipoles. Implementing explicit
multipole integration schemes in various tracking codes in
1990's, it became possible to compute the charged parti- 2 EXPLICIT INTEGRATOR FOR 3D

cle trajectories after a large number of turns without in- MAGNETIC FIELD

troducing artificial damping or anti-damping. These track- | thjs section, we will briefly outline the method to con-
ing codes have become critical tools for designing the thirg; .t 4 second order (and higher) explicit symplectic in-
generation light storage rings with small emittance as Weﬂagrator for a 3D magnetic field with-dependency. The
as high energy physics collider rings with high luminosity.jetajls of this technique can be found in [6]. Let us start
The Ruth's integrator was extended by Forest [3] tQith a charged particle Hamiltonian with a varying mag-

Hamiltonians which can be separated into a multiple nuMyetic field along in the Cartesian coordinate system:
ber of integral parts containing coordinates and momenta

belonging to different canonical pairs. This generalized H(x,pz,y,py,0,1;2)

technique can be used to construct symplectic integrators B \/ 5 5 5

for planar wigglers with an infinite pole width. How- =/ (140)2 = (pr — 02)* = (py — @y)* — a:
ever, this method is limited to Hamiltonians with a two- ~ 54 (pz — az)? N (py — ay)? )

— Qz,
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is the normalized vector potential. A paraxial-ray approx- (Ag exp(: Ao (5 — piff) DAY
imation is made for the Hamiltonian, which is valid and 2(1+9)

. . Ao _

widely used for Iargg rings. o _ (A, exp(: — =2 Dy )A 1)
To see that explicit symplectic integration is possible for 2 2(1+49)

this Hamiltonian, we should extend our phase space to in- Ao Ao

clude(z, p.) as the 4th dimension [7]. The resulting equiv- exp(: Ty % :) exp(: g P )

alent Hamiltonian in the 4D space is: . o
A higher order symplectic integrator can be constructed

K(z,py,Y,py, 0,1, 2,023 0) (2) following Yoshida’s procedure [8].
m_5+(pm—ar)2+(py_ay)2_a Tp
2(1+9) 2(1+96) 2o 3 SYMPLECTIC WIGGLER MODEL
whereo is the new independent variable add = do. The three-dimensional magnetic field for a planar hori-

Noticing that the new Hamiltoniai does not depend on zontal wiggler can be described in the following form:
o explicitly, for a given integration step sizé,c, we can

write down the Lie map solution symbolically as: B, = —-By Z Chnn c0s(kg x) cosh(kym y)
M(Ac) = exp(: —AcK :). (€)) cos(km 2 + em)
Next, we split the Hamiltonianf<, into four parts,K' = B, = B, Zcmn Kt sin(kg ) sinh(kym )
K1+K2+K3+K4,and mon ym
K = p., cos(k.n z + Hm)
K, = a,, B, = By ZC’”" Fzn cos(kq x) sinh(kym y)
K. = (py — ay)2 mn Fym
ST (144 sin(kzn 2 + 02n), (8)
2
K, = -6+ ﬂ, where, By is the amplitude of the on-axis magnetic field,
2(1+9) Cn.n are the relative amplitudes of wiggler harmonics,
Ni(Ao) = exp(: —AcK; ). @ k2, = k2 + k20 kan = nku, ky = 27/A,, andb.,

is the relatlve phase of theth wiggler harmonic. The cor-

Using these partial maps, we can readily write down a Se?espondlng scaler potenﬂa‘B(— “VV)is:

ond order approximation for the mat:

Mo(Ao) = M ( )Nz( )Ns( ) V =18 Z Fum cos(kgr x) sinh(kyp, y) sin(k., 24+6.n).
Ni(A )Ng( )N2( )/\/1( ) Now we will choose a proper gauge so that the vector po-
~ M(Ao)+ O(( ) ). (5) tential will have itsz-componentA, = 0. Consequently,

the normalized vector potential is given by:
To see that mapa/3(42) and V4 (Ao) are also exactly

—

solvable, we use the following generating functions to . _ ¢4

transfer Hamiltoniang(s and K4 to some new coordinate “ = Poc = (az,ay,0)
systems: ,
Y ; p a, = 7050 z; kznn;kl cos(ky ) cosh(kym y)
K3=Aym,K4=v4w(—5+ 2(1+5))7 (6) sin(kan 2 + 02n),
Ay = exp(: —/yj aydy :), Ay = exp(: — /l: agdzr :). Y = ’Ylo(go 2 kjn;lzw ::; sin(kq x) sinh(kym y)
We obserye that the oper_a'_[ions.lély and.A, on the phase sin(kzn 2+ 0zn), ©)
oressed 25 & product of a seres of Lie maps which can HEeres = —Je for electons &7, = L is the wiggfer

parameter, andl, 5, are the relativistic parameters for the
charged particle with the nominal energy. By plugging the
Ao above vector potential into the symplectic integrator devel-

explicitly evaluated:

(o2
Mz(Ag) = exp(s ——-pz ) exp(: ——-a= 1) () gped in Section 2, we arrive at a general explicit integrator
Ao p, _ for horizontal wigglers with an arbitrary number of har-
(Ayexp(: == o= )4, ) monics.

2 2(1+0)



Simila_lrly, we can construct an exp!ipit i_ntegrator for pla- +/ ek (2)dzsin(ng) b | (12)
nar vertical wigglers. By super-positioning vector poten- o

t?als of a horizontal and a vertical wiggler wiFh d_if'ferentwherez0 is an arbitrary location. And the corresponding
field strengths, we are ready to model an arbitrarily polagector potential in the Cartesian coordinate is given by:
ized wiggler.

The harmonic content for a real wiggler magnet can be A, = cos ¢A, —sinpAy, A, = singpA, + cos pAy.
determined by using a two-dimensional discrete Fouri ¥
transformation after imposing the periodic condition in on;
of the transverse directions [9]. A large number of harmo
ics may be needed in order to achieve a high degree of
curacy because of the 3D nature of the field. However, it
is expected that few modes are mainly responsible for the 5 SUMMARY
nonlinear beam dynamics. Therefore a reduced subset of|, this paper, we have outlined a new technique to com-

modes can be used in modeling. pute the motion of a charged particle in a three-dimensional
magnetic field in an explicit symplectic manner under the
4 WIGGLER FRINGE FIELDS paraxial-ray approximation. Applying this technique, we

The fringe effects can be treated separately as we do .ri'r"fwe 'develop.ed exphcn |ntegrator§ for modc_allng g'eneral
jinsertion devices in the storage ring. Multiple wiggler

the case of magnetic multipoles. A simple dipole hard edge . ) o . !
model can be used for a planar wiggler with, — 0 in armonics, arbitrary polarizations, real fringe fields of the

Eqg. 8, where the magnetic field peaks at wiggler ends. A!sDS can all be treated properly in this model. We are

expected the linear effect is the edge focusing [7]. In the process of incorporating this general insertion de-

To properly treat the “real-world” wiggler fringe fields vice model into traditional particle tracking codes, such as

including the field tapering used for the orbit compensaT.RACY [1(.)]' This W'”.e”"’?b'e us to study J.[he dgtal!s of the
ingle particle dynamics in the storage ring with insertion

tion, we need a symplectic model for such a field. Recog: = L D .
evices. Consequently, it will have a significant impact on

nizin_g that the integration scheme _ou'FIined in section Z.iﬁm design of the next generation linear collider damping
applicable to all types of 3D magnetic fields, we can read"Yings with damping wigglers, optimal use of insertion de-

aplgily}/sihlvs\/;esc:n;qr:teet?hg]SvYVIglgLe;]f;Inr?:tif(l:efli(li.j into * urvices in the light source rings, and better understanding of
' P 99 9 P he role that insertion devices play in the storage ring in

wiggler” field represented by the wiggler harmonics (Seé;eneral
Eq. 8) and the fringe field. This fringe field peaks around™,© pointing out that the explicit symplectic tech-

the entrance and exit of the wiggler and tails off Sec-i ue developed here is not limited to insertion devices as
ond, we need to choose a particular type of analytic re;?—q P

resentation for the fringe field. One of the candidates iglustrated by our treatment of the wiggler fringe field. Its

the pseudo-multipoles, widely used in studying multipoléﬂpplicaltions e'xtenq {0 the studies the fringe field effgcts of
fringe field [11]. The scalar potential is given by super-conducing dipoles and wavelength shifters, final fo-

cus systems with combined solenoids and quadrupoles, as

B is computed fromd, truncatingk to a particular order
or A would violateV x B = 0 at higher orders, equivalent
gg_artificially introducing a small current source term.

Vir,é,2) = Z an (7, 2) sin(ng) + by (r, z) cos(ng), well as the cross-talk effects of two closely placed magnetic
s devices.
(10)
wherea,(r,z) = > _gcnk(2)r" T2 and by, (r,z) = 6 REFERENCES
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